2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Механизм действия препарата

2.5.3. Основные механизмы действия лекарств

Многие лекарства имеют одинаковый механизм действия и, следовательно, могут быть объединены в группы и подгруппы. Количество различных фармакологических групп (подгрупп) ограничивается десятками. Лекарственные препараты и фармгруппы изучаются будущим врачом в институте, но для глубокого понимания фармакологии требуется немало специальных знаний и опыт работы в клинике. Однако и неспециалисту полезно попытаться понять хотя бы общие принципы действия лекарств. Тогда пациент сможет вести более аргументированный диалог с врачом, что повысит эффективность их общения. Давайте попробуем разобраться, что же происходит внутри нас, когда мы принимаем лекарство?

Под действием лекарств в организме не происходит новых биохимических реакций или физиологических процессов. Большинство лекарств только стимулируют, имитируют, угнетают или полностью блокируют действие внутренних посредников, передающих сигналы между различными органами и системами через биологические субстраты.

Каждое звено механизма обратной связи участвует в регулировании функций клетки и целого организма, а, следовательно, может служить “мишенью” – биологическим субстратом – для лекарственных средств. Из двух участников реакции “лекарство + биологический субстрат” первый обычно хорошо известен, специалисты знают его структуру и свойства. О втором зачастую информация более скудная: хотя последние 10-20 лет интенсивно изучается структура и функции различных биологических субстратов, однако до полной ясности пока еще далеко.

Многие ферменты являются “мишенями” для лекарств. Лекарства могут угнетать или – реже – повышать активность этих ферментов, а также являться для них “ложными” субстратами. Например, угнетающими активность (ингибирующими) ферментов средствами являются ненаркотические анальгетики и нестероидные противовоспалительные средства (глава 3.9), некоторые противоопухолевые препараты (метотрексат), а ложным субстратом – метилдофа. Ингибиторы ангиотензинпревращающего фермента (АПФ) (каптоприл и эналаприл) широко применяются в качестве понижающих артериальное давление (гипотензивных) средств (глава 3.5). Изменяя активность ферментов, лекарства изменяют внутриклеточные процессы и тем самым обеспечивают лечебный эффект.

В основе фармакологического действия лекарств лежит их физико-химическое или химическое взаимодействие с такими “мишенями”. Возможность взаимодействия лекарства с биологическим субстратом зависит в первую очередь от химического строения каждого из них. Последовательность расположения атомов, пространственная конфигурация молекулы, величина и расположение зарядов, подвижность фрагментов молекулы относительно друг друга влияют на прочность связи и, тем самым, на силу и продолжительность фармакологического действия. Молекула лекарственного вещества в большинстве случаев имеет очень маленький размер по сравнению с биологическими субстратами, поэтому она может соединяться только с небольшим фрагментом макромолекулы рецептора. При любой реакции между лекарством и биологическим субстратом образуется химическая связь (смотри главу 1.4).

Из школьного курса химии известно, что связь между двумя различными веществами может быть обратимой или необратимой, временной или прочной. Она образуется благодаря электростатическим и ван-дер-ваальсовым силам, водородным и гидрофобным взаимодействиям. Прочные ковалентные связи между лекарством и биологическим субстратом встречаются редко. Например, некоторые противоопухолевые средства за счет ковалентного взаимодействия “сшивают” соседние спирали ДНК, являющейся в данном случае субстратом, и необратимо повреждают ее, вызывая гибель опухолевой клетки.

Итак, есть сигнальные молекулы (медиаторы, гормоны, эндогенные биологически активные вещества), и есть биологические субстраты, с которыми эти молекулы взаимодействуют. Лекарства, введенные в организм, могут воспроизводить или блокировать эффекты естественных сигнальных молекул, изменяя тем самым функции клеток, тканей, органов и систем органов. Этим определяется фармакологическое действие лекарств (таблица 2.5.1).

Таблица 2.5.1. Основные принципы действия лекарственных средств (ЛС)
Вид взаимодействияМеханизм взаимодействия ЛС и рецептораЦель создания и примеры таких препаратов
Воспроизведение действия (миметический эффект, агонизм)ЛС по физико-химической структуре очень похоже на сигнальную молекулу (гормон, медиатор). Рецептор, взаимодействуя с ЛС, активирует или тормозит соответствующую функцию клетки. Таким образом, ЛС имитирует действие естественного гормона или медиатораПрепараты оказывают более выраженное, стабильное и длительное по сравнению с медиатором действие. Так действуют адрено- и холиномиметики (смотри адренергические и холинергические средства) и некоторые другие препараты
Конкурентное действие (блокирующий, литический эффект, антагонизм)ЛС по структуре частично похоже на сигнальную молекулу, что позволяет взаимодействовать с рецептором, образуя над ним экран. Возникает конкурентная борьба за рецептор, в которой ЛС имеет “численное преимущество”! Поэтому естественный медиатор или гормон остается “не у дел”, и реакция не “запускается”Препараты позволяют корректировать (блокировать) физиологические реакции клетки. Примером таких препаратов являются адрено-, холино- и гистаминоблокаторы (смотри соответствующие главы)
Неконкурентное взаимодействиеМолекула ЛС связывается с рецепторной макромолекулой не в месте ее взаимодействия с медиатором, а на другом участке. При этом изменяется пространственная структура рецептора, что облегчает или затрудняет его контакт с естественным медиаторомБензодиазепины (оказывают анксиолитическое, седативное и противосудорожное действие), взаимодействуя с бензодиазепиновыми рецепторами, увеличивают прочность связи ГАМК (нейромедиатор с тормозящим действием на центральную нервную систему) с ГАМК-рецепторами

Воспроизведение действия (миметический эффект) наблюдается в тех случаях, когда молекула лекарственного вещества и естественная сигнальная молекула очень похожи: имеют высокое соответствие физико-химических свойств и структуры, обеспечивающих одинаковые внутриклеточные изменения. Результатом взаимодействия лекарства с рецептором в этом случае является активация или торможение определенной функции клеток в полном соответствии с действием эндогенной (внутренней) сигнальной молекулы. Подобным образом действуют очень многие аналоги гормонов и медиаторов (глава 3.1, глава 3.2, глава 3.3). Цель создания подобных лекарств – получение препаратов с более выраженным, стабильным и длительным по сравнению с медиатором (адреналин, ацетилхолин, серотонин и другие) действием, а также восполнение дефицита медиатора или гормона и, соответственно, их функций.

Конкурентное действие (блокирующий, литический эффект) встречается часто и присуще лекарствам, которые лишь частично похожи на сигнальную молекулу (например, медиатор). В этом случае лекарство способно связываться с одним из участков рецептора, но оно не вызывает комплекса реакций, сопутствующих действию естественного медиатора. Такое лекарство как бы создает над рецептором защитный экран, препятствуя его взаимодействию с естественным медиатором, гормоном и так далее. Конкурентная борьба за рецептор, называемая антагонизмом (отсюда и название лекарств – антагонисты), позволяет корректировать физиологические и патологические реакции. Подобным образом действуют адрено-, холино- и гистаминолитики (глава 3.2, глава 3.7, глава 3.10).

Следующий тип взаимодействия лекарства с рецептором называют неконкурентным, и в этом случае молекула лекарства связывается с рецепторной макромолекулой не в месте ее взаимодействия с медиатором, а на рядом расположенном участке, то есть действует опосредованно. При этом происходит изменение пространственной структуры рецептора, вызывающее раскрытие или закрытие его для естественного медиатора. В этих случаях рецептор для лекарства и рецептор для медиатора не совпадают, но находятся в одном рецепторном комплексе, и лекарство не вступает в прямое взаимодействие с рецептором. Ярким примером лекарств, действующих по этому типу, являются бензодиазепины – большая группа структурно родственных соединений, обладающих анксиолитическими, снотворными и противосудорожными свойствами (глава 3.1). Соединяясь со специфическими бензодиазепиновыми рецепторами, которые взаимосвязаны с рецепторами гамма-аминомасляной кислоты (ГАМК), лекарственное средство изменяет пространственную конфигурацию ГАМК-рецепторов и увеличивает прочность их связи с субстратом – гамма-аминомасляной кислотой. В результате усиливается тормозящее влияние этого медиатора на центральную нервную систему, чем обеспечивается лечебный эффект препаратов.

Читать еще:  Кора крем для век с маслом ши состав особенности применения

Некоторые лекарства способны повышать или понижать синтез естественных регуляторов (медиаторов, гормонов и так далее), влиять на процессы их накопления в клетках или ферментного разрушения. Подробнее такие эффекты будут рассмотрены, в частности, в главе 3.1, посвященной средствам, влияющим на функции центральной нервной системы.

Механизм действия лекарств на молекулярном и клеточном уровнях имеет очень большое значение, но не менее важно знать, на какие физиологические процессы влияет препарат, то есть каковы его эффекты на системном уровне. Возьмем, к примеру, лекарственные средства, снижающие артериальное давление. Один и тот же результат – снижение давления – может быть достигнут разными способами:

1) угнетением сосудодвигательного центра (магния сульфат);

2) угнетением передачи возбуждения в вегетативной нервной системе (ганглиоблокаторы);

3) ослаблением работы сердца, уменьшением его ударного и минутного объемов (бета-адреноблокаторы);

6) снижением активности системы ренин-ангиотензин (ингибиторы АПФ, антагонисты ангиотензиновых рецепторов) и другие.

Таким образом, одни и те же фармакологические эффекты (увеличение частоты сокращений сердца, расширение бронхов, устранение боли и так далее) можно получить с помощью нескольких препаратов, имеющих различные механизмы действия.

Еще один пример – кашель. Если кашель обусловлен воспалением дыхательных путей, назначают противокашлевые средства периферического действия, причем, часто комбинируют их с отхаркивающими препаратами. Кашель у больных туберкулезом или при новообразованиях бронхов устраняют центрально действующие наркотические анальгетики (кодеин). А в детской практике в тяжелых случаях коклюша кашель лечат введением нейролептика хлорпромазина (препарат Аминазин).

Выбор лекарства, необходимого конкретному больному, осуществляет врач, руководствуясь знанием механизма действия лекарственных препаратов и обусловленных им терапевтических и побочных эффектов. Мы надеемся, что теперь вам стало понятнее, как сложен этот выбор, и какими знаниями и опытом надо обладать, чтобы правильно его сделать.

Но поскольку все органы и системы взаимосвязаны, то какие-либо изменения функции одного органа или системы вызывают сдвиги в работе других органов и систем. Кроме того, субстраты для взаимодействия могут находиться в разных органах, что также обеспечивает их взаимосвязь. Она проявляется как на физиологическом, так и на биохимическом уровнях, определяя неоднозначность и многогранность действия лекарств, наличие не только лечебного, но и побочного действия у большинства препаратов.

Так, расширение сосудов и понижение артериального давления при приеме нитроглицерина сопровождаются рефлекторным повышением частоты сердечных сокращений, а также обусловленной расширением сосудов головного мозга, так называемой нитратной головной болью. Атропин, обладающий выраженными спазмолитическими свойствами, за счет своего механизма действия может нарушить отток внутриглазной жидкости, вызвав приступ глаукомы, и так далее.

На взаимодействие лекарств с биологическим субстратами, а, соответственно, и на эффекты препарата, большое влияние оказывают прием пищи, алкоголя, возраст пациента, одновременный прием других препаратов и еще ряд факторов, роль которых рассматривается в следующих главах.

Механизм действия препарата

Цель данной статьи состоит в том, чтобы объяснить механизмы действия лекарств путем объединения эффектов, производимых ими на молекулярном, клеточном, тканевом и системном уровнях биологического организма. Основное внимание уделено действию на молекулярном и клеточном уровнях, а специфические действия лекарств на ткани и системы организма рассматриваются в Тканевое и системное действие лекарств.

Лекарственные средства действуют на четырех разных уровнях:

  • молекулярном, на котором белковые молекулы являются непосредственными мишенями для большинства лекарств. Эффекты на данном уровне определяют действие лекарств на следующем уровне;
  • клеточном, на котором биохимические и другие компоненты клетки участвуют в процессах трансдукции;
  • тканевом, на котором происходит изменение функций сердца, кожи, легких и др.;
  • системном, на котором происходит изменение функций сердечно-сосудистой и нервной систем, желудочно-кишечного тракта и др.

Для того чтобы понять механизм действия лекарств, необходимо знать, на какие молекулярные мишени действует вещество, природу системы трансдукции (клеточный ответ), типы ткани-мишени и механизмы, посредством которых ткань воздействует на системы организма. Механизмы действия лекарственных веществ нужно рассматривать на каждом из четырех уровней.

В качестве примера можно привести препарат пропранолол — β-адреноблокатор, используемый для лечения некоторых заболеваний, в том числе стенокардии, сердечной недостаточности из-за локальной ишемии (т.е. недостаточного кровотока) в сердце:

  • на молекулярном уровне пропранолол — конкурентный обратимый антагонист адреналина и норадреналина за действие на β-адренорецепторы;
  • на клеточном уровне пропранолол предотвращает β-адренозависимое увеличение внутриклеточного циклического аденозинмонофосфата (цАМФ), инициирующего фосфорилирование белков, мобилизацию ионов кальция и окислительный метаболизм;
  • на тканевом уровне пропранолол предотвращает β-адренозависимое увеличение силы и частоты сердечных сокращений, т.е. оказывает отрицательные инотропный и хронотропный эффекты;
  • на системном уровне пропранолол улучшает функцию сердечно-сосудистой системы. Он снижает β-адренозависимый ответ сердца на активность симпатической нервной системы, уменьшая тем самым потребность тканей сердца в кровотоке, что целесообразно при ограниченном притоке крови (например, при ишемии коронарных артерий).

Механизм действия лекарственных средств на четырех уровнях также можно показать на примере рифампицина, хотя этот препарат действует больше на бактерии, чем на ткани человека.

Рифампицин — это эффективный препарат для лечения туберкулеза:

  • на молекулярном уровне рифампицин связывает (и блокирует активность) полимеразы рибонуклеиновой кислоты (РНК) в микобактерии, которая вызывает туберкулез;
  • на клеточном уровне рифампицин ингибирует синтез РНК в микобактерии и таким образом убивает ее;
  • на тканевом уровне рифампицин предотвращает повреждение ткани легких, возникающее вследствие инфекции микобактерии;
  • на системном уровне рифампицин предотвращает недостаточность легочной функции, вызванную инфекцией микобактерии.

Лекарства можно классифицировать, основываясь на молекулярном, клеточном, тканевом и системном типах действия

На молекулярном уровне пропранолол всегда классифицируют как β-адреноблокатор. Но его выявление на клеточном, тканевом и системном уровнях зависит от патологии, для лечения которой его используют (например, стенокардии и гипертензии).

Фармакологическая классификация лекарственных средств включает виды оказываемых ими эффектов

Безусловно, важно классифицировать лекарства на основе как места их действия, так и вида оказываемого ими действия. Фармакология располагает большим запасом терминов для описания действия лекарств, которые будут представлены далее. Здесь же приводится краткое обсуждение классификации лекарств.

Термины, используемые для описания раличных типов фармакологического действия, зачастую составляют пары: «ингибитор» и «активатор», «антагонист» и «агонист», «депрессант» и «экситант», «прямой» и «непрямой». В этих примерах каждый термин из пары является антонимом другому. Такие термины помогают классифицировать тип фармакологического действия, оказываемого лекарством, но сами по себе малоинформативны (более того, часто эти термины используют неуместно):

  • термин «ингибитор» используют для определения средств, предотвращающих или уменьшающих физиологическую, биохимическую или фармакологическую активность. Ингибирование может происходить на уровне ферментов, нервной или гормональной системы, рецепторов, ионных каналов, клеточных мембран, а также отдельных органов и целого организма;
  • термин «активатор» противоположен по значению термину «ингибитор».

Таким образом, практически любое лекарство может быть рассмотрено либо как ингибитор, либо как активатор. Недостатком является то, что ингибитор в одном случае может выступать активатором в другом, например при стимулировании одного центра путем ингибирования другого.

Читать еще:  Когда нужны обезболивающие капли

Термины «антагонист» и «агонист» связаны тем, что антагонист препятствует агонисту осуществлять свое действие, в то время как агонисты — это вещества, производящие эффект. Если термины используют корректно, то и агонист, и антагонист должны воздействовать на один и тот же рецептор. Однако иногда термин «антагонист» используют неточно. Например, антагонистами кальция называют препараты, блокирующие Са2+-каналы.

Термины «супрессор» и «экситант» менее точные и определяют средства, которые, соответственно, уменьшают и увеличивают активность систем организма, в частности центральной нервной системы (ЦНС).

Некоторые лекарственные средства оказывают эффект в результате прямого действия на определенные ткани, в то время как другие — вследствие непрямого, или опосредованного, действия. Например, лекарства могут расслаблять гладкие мышцы сосудов путем прямого действия на мышцы или вторично — за счет высвобождения релаксантов прямого действия или ингибируя высвобождение и действие сократительных субстанций. В качестве других примеров можно привести отрицательное действие β-блокаторов (например, пропранолола) на сократимость сердца, который уменьшает действие симпатической системы на сердце. Амины (симпатомиметики) непосредственно учащают сокращения сердца путем действия на клетки водителя ритма, контролирующие частоту сокращений,в то время как атропин может ускорять сердечный ритм: как антагонист мускариновых рецепторов, он уменьшает действие парасимпатических нервов (через выход ацетилхолина) на сердце.

Ответ на действие лекарств проявляется на молекулярном, клеточном, тканевом и системном уровнях

Поскольку механизм действия лекарств проявляется на любом из четырех уровней, ответ на действие лекарств может быть определен таким же образом (табл. 2.1). Средства, которые активируют свои молекулярные мишени, называют агонистами или активаторами (точный термин зависит от природы молекулы-мишени). Средства, которые блокируют либо тормозят действие агонистов (активаторов) или инактивируют молекулу-мишень, называют антагонистами, блокаторами либо ингибиторами. Последние не обладают прямым действием на клеточном, тканевом и системном уровнях, но могут блокировать молекулярный ответ на действие эндогенных или экзогенных агонистов (активаторов).

Таблица 2.1 Четыре уровня воздействия лекарств

Типовые механизмы действия лекарств

СОДЕРЖАНИЕ

Глава 1 Основы общей и клинической фармакологии
Глава 2 Лекарственная терапия ишемической болезни сердца
Глава 3 Лекарственная терапия артериальной гипертонии
Глава 4 Лекарственная терапия нарушений сердечного ритма и проводимости
Глава 5 Лекарственная терапия сердечной недостаточности
Глава 6 Лекарственная терапия пневмоний
Глава 7 Лекарственная терапия бронхиальной астмы
Глава 8 Лекарственная терапия язвенной болезни
Глава 9 Лекарственная противовоспалительная терапия
Указатель лекарственных препаратов


Посвящается 200-летию Военно-медицинской академии и кафедры

патологии и терапии

ПРЕДИСЛОВИЕ

Настоящее издание посвящено вопросам основных патологических состояний, встречающихся у больных в деятельности врача общей практики и терапевта — ишемической болезни сердца, артериальной гипертонии, нарушений сердечного ритма, сердечной недостаточности, пнев­монии, бронхиальной астмы, язвенной болезни желудка и двенадцати­перстной кишки, воспалительных заболеваний.

Пособие содержит основные сведения по вопросам общей и кли­нической фармакологии, необходимые для более глубокого пони­мания освещаемых проблем медикаментозного лечения заболеваний внутренних органов. В главах, посвященных лекарственной терапии при вышеназванных заболеваниях, содержатся материалы, отража­ющие представления об их этиологии, патогенезе, целях и принци­пах лечения. Даются клинико-фармакологические характеристики используемых лекарственных средств с описанием групп препара­тов и отдельных их представителей. Изложены современные взгля­ды на дифференцированный и индивидуальный подходы к назначению фармакологических средств, критерии эффективности их применения, соответствующие материалы консенсусов и стандартов диагностики и лечения. Приведены необходимые для использования в этом процессе классификации заболеваний.

В приложении для облегчения выписки рецептов в алфавитном порядке перечислены описанные в пособии препараты, даны их латинские названия и формы выпуска.

ОСНОВЫ ОБЩЕЙ И КЛИНИЧЕСКОЙ ФАРМАКОЛОГИИ

Прежде чем обсуждать частные вопросы применения лекарств при различной патологии, целесообразно вспомнить основные положения общей и клинической фармакологии, составляющие фундаменталь­ную основу, на которой базируется подход к лекарственной терапии в целом. Эти знания ее дают врачу необходимую уверенность и гибкость в различных, часто весьма нестандартных клинических ситуациях, ког­да имеющиеся жесткие схемы лечения оказываются бесполезными.

Клиническая фармакология — наука, изучающая взаимодействие ле­карственных средств (лекарственных препаратов) с организмом че­ловека. Наряду с экспериментальной фармакологией, она является частью медицинской фармакологии науки о веществах, используе­мых для предупреждения, диагностики и лечения заболеваний.

Клиническая фармакология изучает фармакодинамику -действие ле­карств на организм, и (фармакокинетику — действие организма на введен­ное лекарство, его всасывание, распределение, метаболизм и выведение.

Важной областью клинической фармакологии является терапевтическая оценкa лекарственных средств в ходе клинических испыта­ний, наблюдений и многоцентровых контролируемых исследований, которые позволяют установить эффективность и переносимость кон­кретных лекарств, степень их влияния на качество жизни и прогноз при различных заболеваниях, чем во многом определяется клини­ческая ценность препарата.

Лекарственное средство — химическое вещество или продукт, пред­назначаемый для изменения или исследования физиологических и па­тологических процессов в организме на благо реципиента.

Лeкарственный препарат — это лекарственное средство в определен­ной лекарственной форме, которая должна обеспечивать эффективное действие при данном пути введения. Одно и то же лекарственное сред­ство может быть представлено в различных препаратах.

Помимо патентованного (коммерческого) названия, каждый лекарственный препарат имеет международное, принятое в фармакопеях различных стран и используемое при построении классификации лекарственных средств. Понятно, что коммерческих наименований препаратов намного больше числа самих лекарственных средств, поэтому на упаковке лекарства, как правило, указываются оба названия, а в инструкциях к применению препа­рата — и его полное химическое название. В коммерческое назва­ние, помимо атрибутов фирмы, нередко вводятся указания на длительность действия (“ретард”, “лонг”, “ленте”, “SR”,”XR”,”XL”) или дозировку (“сустак-форте”, “сустак-мите”, “изоптин-120”, “бисептол-480”).

ФАРМАКОДИНАМИКА

Действие лекарства на организм определяется его свойства­ми и в первую очередь — механизмом, через который реализуется лечебный эффект.

Типовые механизмы действия лекарств

Подавляющее большинство лекарственных средств действуют, связываясь с разнообразными рецепторами, и лишь некоторые лекарства имеют нерецепторный механизм действия.

I. Рецепторные взаимодействия

Воздействие на активный центр рецептора с имитацией или бло­кированием действия естественного агониста (средства, воздействующие на вегетативную нервную систему, на потенциалзависимые и лигандзависимые каналы).

Конформационные сдвиги регуляторных участков рецептора, из­меняющие его чувствительность к естественным лигандам — аллостерическое взаимодействие с рецептором (бензодиазепины, сер­дечные гликозиды).

Подавление или активация внеклеточных или внутриклеточных ферментов (антихолинэстеразные средства, ингибиторы ангиотензинпревращающего фермента и моноаминооксидазы).

Взаимодействие с геномом (стероидные гормоны и их аналоги, ви­тамины А и D).

II. Нерецепторные взаимодействия

Нарушение структуры макромолекул (противоопухолевые средства, иммунодепрессанты, антибиотики, антисептики).

Конкурентная блокада образования эндогенных соединений (антиметаболиты).

Субстратное усиление (леводопа).

Прямое взаимодействие с эндогенными и экзогенными соединени­ями (антациды, хелатообразующие соединения, некоторые антидоты).

Рецепторы — это белковые молекулы сложной конфигурации, рас­положенные на мембранах клеток, внутри- или внеклеточно. При об­ратимом связывании рецепторов с эндогенными лигандами (специ­фичными для них веществами-регуляторами) в клетках, органах и тканях организма возникают определенные функционально-метабо­лические сдвиги.

Мембранные рецепторы состоят из 2 частей, доменов — лигандсвязывающего и эффекторного (исполнительного). Последний домен мо­жет непосредственно взаимодействовать с эффекторными структура­ми, однако чаще это происходит через посредников-трансдукторов, которые обеспечивают дальнейшую передачу сигнала к первичным или вторичным эффекторам. осуществляющим функционально-мета­болические реакции. Наиболее типичным примером такой сложной рецепторной системы является цепочка: рецептор —> G-белок (трансдуктор) —> аденилатциклаза (первичный эффектор) —> цАМФ (вторич­ный мессенджер) —> протеинкиназа А (вторичный эффектор).

Читать еще:  Колбиоцин показания и противопоказания к применению глазной мази

Рецепторы способны связываться и с веществами экзогенного происхождения (лекарствами), если их структура напоминает строение эндогенного лиганда. Результаты такого связывания могут быть различными.

По своему влиянию на рецепторы лекарства разделяются на 3 типа:

агонисты при связывании с рецептором активируют его и вызывают эффекты, присущие естественным лигандам (стимулирующие влияния);

антагонисты, связываясь с рецептором не активируют его, но пре­пятствуют действию естественных лигандов (блокирующие или ингибирующие влияния);

агонисты-антагонисты обладают слабым стимулирующим влиянием на рецепторы, но при этом блокируют действие эндогенных активаторов.

Очень часто, но не всегда точно, используют различные синонимы этих понятий, например агонисты называются стимуляторами (бета-адреностимуляторы) или миметиками (холиномиметики), а антагонисты обозначаются, как блокаторы (бета-адреноблокаторы), литики (холинолитики) или ингибиторы (ингибиторы протонной помпы).

Лекарства-антагонисты разделяются на обратимые (конкурентные) и необратимые (неконкурентные). Последние, прочно связываясь рецеп­торами, исключают конкуренцию естественного лиганда за рецептор, что способствует большей длительности действия, так как для восста­новления функции требуется время на синтез новых рецепторов.

Особенности рецепторного взaимодействия

Рецепторное взаимодействие несет в себе ряд характеристик и осо­бенностей, о которых следует помнить.

Аффинитет способность лиганда к связыванию с рецептором (степень сродства с ним). Чем выше аффинитет, тем выше связывание с рецептором при тех же копнет рациях лекарства. Это свойство играет важную роль при конкуренции лекарств за общий рецептор.

Активность — оценивается по концентрации (БС50) или дозе (HD50) лекарства, требуемой для получения эффекта, равного половине (50%) максимального. Активность зависит от аффинитета ле­карства и ответной реакции рецепторов.

Эффективность (максимальная эффективность) — сила фармако­логического действия, зависящая не от активности, а от особенностей взаимодействия с рецепторами и работы пострецепторных механиз­мов (вторичных посредников, регуляторов и т.д.). Высокая активность не означает достаточной эффективности (т.е. максимальной силы дей­ствия). Максимальная эффективность обозначает предел, за которым дельнейшее увеличение дозы не вызовет прироста ответной реакции.

Селективность — избирательность действия лекарства. Нередко она обусловлена преимущественным связыванием только с опреде­ленным типом (подтипом) рецепторов. Чем выше селективность пре­парата, тем меньше следует ожидать побочных эффектов в ходе его приема. Например: селективные бета-2-адреномиметики вызывают бронходилатацию, не оказывая при этом стимулирующего влияния на бета-1-рецепторы сердца, а кардиоселективные (бета-1-селектив­ные) адреноблокаторы при выраженном воздействии на миокард обладают минимальным угнетающим влиянием на бета-2-рецепторы бронхов и сосудов. Следует, однако, заметить, что избиратель­ность многих лекарств относительна и уменьшается при существен­ном увеличении дозы или при кумуляции в ходе длительного приема.

Регуляция деятельности рецепторов

Десенситизация — механизм ауторегуляции, заключающийся в ос­лаблении действия лекарства при повторном приеме. Она может раз­виваться в различные сроки от начала приема лекарств (от несколь­ких минут до нескольких дней) и опосредоваться различными меха­низмами. Эти механизмы включают: обратимое погружение комп­лекса лиганд-рецептор в цитоплазму, уменьшение количества рецеп­торов в клетке, наконец, пострецепторные изменения активности вторичных посредников и эффекторов.

Сенситизация — усиление действия агонистов соответствующих ре­цепторов. Наблюдается после продолжительного использования ан­тагонистов, физической или фармакологической денервации органа.

Феномены сенситизации и десенситизации лежат в основе ряда клинических феноменов, затрудняющих фармакологическое лечение, и вызывающих связанные с ним осложнения.

Дата добавления: 2016-11-18 ; просмотров: 1383 | Нарушение авторских прав

Фармакология (В. Н. Малеванная)

Информативные ответы на все вопросы курса «Фармакология» в соответствии с Государственным образовательным стандартом.

Оглавление

  • 1. Предмет фармакологии, ее история и задачи. Клиническая фармакология и виды фармакотерапии
  • 2. Понятие о лекарствах. Рецепт, правила его оформления
  • 3. Сроки действия рецептов и дозировка лекарственных веществ. Твердые лекарственные формы
  • 4. Жидкие и мягкие лекарственные формы
  • 5. Пути введения лекарственных веществ
  • 6. Механизм действия лекарственных средств, дозы лекарственных веществ
  • 7. Значение состояния организма и внешних условий для действия лекарств. Всасывание и распределение лекарственных веществ
  • 8. Биотрансформация и выведение лекарственных веществ. Понятие о фармакогенетике
  • 9. Классификация наркоза. Неингаляционный наркоз
  • 10. Средства для ингаляционного и неингаляционного наркоза
  • 11. Снотворные средства
  • 12. Психотропные препараты. Нейролептики
  • 13. Препараты группы нейролептиков
  • 14. Галопередол, дропередол, хлорпротиксен, пропульсин

Из серии: Шпаргалки

Приведённый ознакомительный фрагмент книги Фармакология (В. Н. Малеванная) предоставлен нашим книжным партнёром — компанией ЛитРес.

6. Механизм действия лекарственных средств, дозы лекарственных веществ

В основе действия большинства лекарственных средств лежит процесс воздействия на физиологические системы организма, выражающиеся изменением скорости протекания естественных процессов. Возможны следующие механизмы действия лекарственных веществ.

Физические и физико-химические механизмы.

Речь идет об изменении проницаемости и других качеств клеточных оболочек вследствие растворения в них лекарственного вещества или адсорбции его на поверхности клетки; об изменении коллоидного состояния белков и т. п.

Химические механизмы. Лекарственное вещество вступает в химическую реакцию с составными частями тканей или жидкостями организма, при этом они воздействуют на специфические рецепторы, ферменты, мембраны клеток или прямо взаимодействуют с веществами клеток.

Действие на специфические рецепторы основано прежде всего на том, что макромолекулярные структуры избирательно чувствительны к определенным химическим соединениям. Лекарственные средства, повышающие функциональную активность рецепторов, называются агонистами, а препараты, препятствующие действию специфических агонистов, – антагонистами. Различают антагонизм конкурентный и неконкурентный. В первом случае лекарственное вещество конкурирует с естественным медиатором за места соединения в специфических рецепторах. Блокада рецептора, вызванная конкурентным антагонистом, может быть восстановлена большими дозами агониста или естественного медиатора.

Влияние на активность ферментов связано с тем, что некоторые лекарственные вещества способны повышать и угнетать активность специфических ферментов.

Физико-химическое действие на мембраны клеток (нервной и мышечной) связано с потоком ионов, определяющих трансмемб-ранный электрический потенциал. Некоторые лекарственные препараты способны изменять транспорт ионов (антиаритмические, противо-судорожные препараты, средства для общего наркоза).

Прямое химическое взаимодействие лекарств

возможно с небольшими молекулами или ионами внутри клеток. Принцип прямого химического взаимодействия составляет основу антидотной терапии при отравлении химическими веществами.

Различают пороговые, терапевтические и токсические дозы. Для каждого вещества имеется минимально действующая, или пороговая, доза, ниже которой действие не проявляется. Дозы выше пороговой могут быть использованы для лечебных целей, если они не вызывают явлений отравления. Такие дозы называются терапевтическими. Дозы, вызывающие отравление, называются токсическими; приводящие к смертельному исходу – летальными (от лат. letum – «смерть»). Широтой терапевтического действия называют диапазон между пороговой и минимальной токсической дозой. Чем больше широта терапевтического действия препарата, тем меньше опасность возникновения токсических явлений в процессе лечения.

Средние терапевтические дозы – это дозы, применяемые в медицинской практике и дающие хороший терапевтический эффект.

Приведённый ознакомительный фрагмент книги Фармакология (В. Н. Малеванная) предоставлен нашим книжным партнёром — компанией ЛитРес.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector