Особенности строения человеческих глаз
Строение и свойства глаза
Глаз состоит из глазного яблока диаметром 22–24 мм, покрытого непрозрачной оболочкой, склерой, а спереди — прозрачной роговицей (или роговой оболочкой). Склера и роговица защищают глаз и служат для крепления глазо-двигательных мышц.
Радужная оболочка — тонкая сосудистая пластинка, ограничивающая проходящий пучок лучей. Свет проникает в глаз через зрачок. В зависимости от освещения диаметр зрачка может изменяться от 1 до 8 мм.
Хрусталик представляет собой эластичную линзу, которая крепится на мышцах ресничного тела. Ресничное тело обеспечивает изменение формы хрусталика. Хрусталик разделяет внутреннюю поверхность глаза на переднюю камеру, заполненную водянистой влагой, и заднюю камеру, заполненную стекловидным телом.
Внутренняя поверхность задней камеры покрыта светочувствительным слоем — сетчаткой. От сетчатки световой сигнал передается в мозг по зрительному нерву. Между сетчаткой и склерой находится сосудистая оболочка, состоящая из сети кровеносных сосудов, питающих глаз.
На сетчатке имеется желтое пятно — участок наиболее ясного видения. Линия, проходящая через центр желтого пятна и центр хрусталика, называется зрительной осью. Она отклонена от оптической оси глаза вверх на угол около 5 градусов. Диаметр желтого пятна — около 1 мм, а соответствующее ему поле зрения глаза — 6–8 градусов.
Сетчатка покрыта светочувствительными элементами: палочками и колбочками. Палочки более чувствительны к свету, но не различают цветов и служат для сумеречного зрения. Колбочки чувствительны к цветам, но менее чувствительны к свету и поэтому служат для дневного зрения. В области желтого пятна преобладают колбочки, а палочек мало; к периферии сетчатки, наоборот, число колбочек быстро уменьшается, и остаются только палочки.
В середине желтого пятна находится центральная ямка. Дно ямки выстлано только колбочками. Диаметр центральной ямки — 0,4 мм, поле зрения — 1 градус.
В желтом пятне к большинству колбочек подходят отдельные волокна зрительного нерва. Вне желтого пятна одно волокно зрительного нерва обслуживает группу колбочек или палочек. Поэтому в области ямки и желтого пятна глаз может различать тонкие детали, а изображение, попадающее на остальные места сетчатки, становится менее четким. Периферическая часть сетчатки служит в основном для ориентирования в пространстве.
В палочках находится пигмент родопсин, собирающийся в них в темноте и выцветающий на свету. Восприятие света палочками обусловлено химическими реакциями под действием света на родопсин. Колбочки реагируют на свет за счет реакции йодопсина.
Кроме родопсина и йодопсина на задней поверхности сетчатки имеется пигмент черного цвета. При свете этот пигмент проникает в слои сетчатки и, поглощая значительную часть световой энергии, защищает палочки и колбочки от сильного светового воздействия.
На месте ствола зрительного нерва располагается слепое пятно. Этот участок сетчатки не чувствителен к свету. Диаметр слепого пятна — 1,88 мм, что соответствует полю зрения 6 градусов. Это значит, что человек с расстояния 1 м может не увидеть предмета диаметром 10 см, если его изображение проектируется на слепое пятно.
Оптическая система глаза
Оптическая система глаза состоит из роговицы, водянистой влаги, хрусталика и стекловидного тела. Преломление света в глазе происходит, главным образом, на роговице и поверхностях хрусталика.
Свет от наблюдаемого предмета проходит через оптическую систему глаза и фокусируется на сетчатке, образуя на ней обратное и уменьшенное изображение (мозг «переворачивает» обратное изображение, и оно воспринимается как прямое).
Показатель преломления стекловидного тела больше единицы, поэтому фокусные расстояния глаза во внешнем пространстве (переднее фокусное расстояние) и внутри глаза (заднее фокусное расстояние) неодинаковы.
Оптическая сила глаза (в диоптриях) вычисляется как обратное заднее фокусное расстояние глаза, выраженное в метрах. Оптическая сила глаза зависит от того, находится ли он в состоянии покоя (58 диоптрий для нормального глаза) или в состоянии наибольшей аккомодации (70 диоптрий).
Аккомодация — это способность глаза четко различать предметы, находящиеся на разных расстояниях. Аккомодация происходит за счет изменения кривизны хрусталика при натяжении или расслаблении мышц ресничного тела. Когда ресничное тело натянуто, хрусталик растягивается, и его радиусы кривизны увеличиваются. При уменьшении натяжения мышцы кривизна хрусталика увеличивается под действием упругих сил.
В свободном, ненапряженном состоянии нормального глаза на сетчатке получаются ясные изображения бесконечно удаленных предметов, а при наибольшей аккомодации видны самые близкие предметы.
Положение предмета, при котором создается резкое изображение на сетчатке для ненапряженного глаза, называют дальней точкой глаза.
Положение предмета, при котором создается резкое изображение на сетчатке при наибольшем возможном напряжении глаза, называют ближней точкой глаза.
При аккомодации глаза на бесконечность задний фокус совпадает с сетчаткой. При наибольшем напряжении на сетчатке получается изображение предмета, находящегося на расстоянии около 9 см.
Разность обратных величин расстояний между ближней и дальней точкой называют диапазоном аккомодации глаза (измеряется в диоптриях).
С возрастом способность глаза к аккомодации уменьшается. В возрасте 20 лет для среднего глаза ближняя точка находится на расстоянии около 10 см (диапазон аккомодации 10 диоптрий), в 50 лет ближняя точка располагается на расстоянии уже около 40 см (диапазон аккомодации 2,5 диоптрии), а к 60 годам уходит на бесконечность, то есть аккомодация прекращается. Это явление называется возрастной дальнозоркостью или пресбиопией.
Расстояние наилучшего зрения — это расстояние, на котором нормальный глаз испытывает наименьшее напряжение при рассматривании деталей предмета. При нормальном зрении оно составляет в среднем 25–30 см.
Приспособление глаза к изменившимся условиям освещенности называется адаптацией. Адаптация происходит за счет изменения диаметра отверстия зрачка, перемещения черного пигмента в слоях сетчатки и различной реакцией на свет палочек и колбочек. Сокращение зрачка происходит за 5 секунд, а его полное расширение — за 5 минут.
Темновая адаптация происходит при переходе от больших яркостей к малым. При ярком свете работают колбочки, палочки же «ослеплены», родопсин выцвел, черный пигмент проник в сетчатку, заслоняя колбочки от света. При резком снижении яркости отверстие зрачка раскрывается, пропуская больший световой поток. Затем из сетчатки уходит черный пигмент, родопсин восстанавливается, и когда его становится достаточно, начинают функционировать палочки. Так как колбочки не чувствительны к слабым яркостям, то сначала глаз ничего не различает. Чувствительность глаза достигает максимального значения через 50–60 минут пребывания в темноте.
Световая адаптация — это процесс приспособления глаза при переходе от малых яркостей к большим. Сначала палочки сильно раздражены, «ослеплены» из-за быстрого разложения родопсина. Колбочки, не защищенные еще зернами черного пигмента, также раздражены слишком сильно. Через 8–10 минут чувство ослепления прекращается, и глаз снова видит.
Поле зрения глаза достаточно широкое (125 градусов по вертикали и 150 градусов по горизонтали), но для ясного различения используется только его малая часть. Поле наиболее совершенного зрения (соответствующее центральной ямке) — около 1–1,5°, удовлетворительного (в области всего желтого пятна) — около 8° по горизонтали и 6° по вертикали. Вся остальная часть поля зрения служит для грубого ориентирования в пространстве. Для обозрения окружающего пространства глазу приходится совершать непрерывное вращательное движение в своей орбите в пределах 45–50°. Это вращение приводит изображения различных предметов на центральную ямку и дает возможность рассмотреть их детально. Движения глаза совершаются без участия сознания и, как правило, не замечаются человеком.
Угловой предел разрешения глаза — это минимальный угол, при котором глаз наблюдает раздельно две светящиеся точки. Угловой предел разрешения глаза составляет около 1 минуты и зависит от контраста предметов, освещенности, диаметра зрачка и длины волны света. Кроме того, предел разрешения увеличивается при удалении изображения от центральной ямки и при наличии дефектов зрения.
Дефекты зрения и их коррекция
При нормальном зрении дальняя точка глаза бесконечно удалена. Это означает, что фокусное расстояние расслабленного глаза равно длине оси глаза, и изображение попадает точно на сетчатку в области центральной ямки.
Такой глаз хорошо различает предметы вдали, а при достаточной аккомодации — и вблизи.
Близорукость
При близорукости лучи от бесконечно удаленного предмета фокусируются перед сетчаткой, поэтому на сетчатке формируется размытое изображение.
Чаще всего это происходит из-за удлинения (деформации) глазного яблока. Реже близорукость возникает при нормальной длине глаза (около 24 мм) из-за слишком большой оптической силы оптической системы глаза (более 60 диоптрий).
В обоих случаях изображение от удаленных предметов находится внутри глаза, а не на сетчатке. На сетчатку попадает только фокус от близко расположенных к глазу предметов, то есть дальняя точка глаза находится на конечном расстоянии перед ним.
Дальняя точка глаза
Близорукость корректируется при помощи отрицательных линз, которые строят изображение бесконечно удаленной точки в дальней точке глаза.
Дальняя точка глаза
Близорукость чаще всего появляется в детском и подростковом возрасте, причем по мере роста глазного яблока в длину близорукость увеличивается. Истинной близорукости, как правило, предшествует так называемая ложная близорукость — следствие спазма аккомодации. В этом случае можно восстановить нормальное зрение при помощи средств, расширяющих зрачок и снимающих напряжение ресничной мышцы.
Дальнозоркость
При дальнозоркости лучи от бесконечно удаленного предмета фокусируются за сетчаткой.
Дальнозоркость вызывается слабой оптической силой глаза для данной длины глазного яблока: либо короткий глаз при нормальной оптической силе, либо малая оптическая сила глаза при нормальной длине.
Чтобы сфокусировать изображение на сетчатке, приходится все время напрягать мышцы ресничного тела. Чем ближе предметы к глазу, тем все дальше за сетчатку уходит их изображение и тем больше требуется усилий мышц глаза.
Дальняя точка дальнозоркого глаза находится за сетчаткой, т. е. в расслабленном состоянии он может четко увидеть лишь предмет, который находится позади него.
Дальняя точка глаза
Конечно, поместить предмет за глаз нельзя, но можно спроецировать туда его изображение при помощи положительных линз.
Дальняя точка глаза
При небольшой дальнозоркости зрение вдаль и вблизи хорошее, но могут быть жалобы на быструю утомляемость и головную боль при работе. При средней степени дальнозоркости зрение вдаль остается хорошим, а вблизи затруднено. При высокой дальнозоркости плохим становится зрение и вдаль, и вблизи, так как исчерпаны все возможности глаза фокусировать на сетчатке изображение даже далеко расположенных предметов.
У новорожденного глаз немного сдавлен в горизонтальном направлении, поэтому у глаза есть небольшая дальнозоркость, которая проходит по мере роста глазного яблока.
Аметропия
Аметропия (близорукость или дальнозоркость) глаза выражается в диоптриях как величина, обратная расстоянию от поверхности глаза до дальней точки, выраженной в метрах.
Оптическая сила линзы, необходимая для коррекции близорукости или дальнозоркости, зависит от расстояния от очков до глаза. Контактные линзы располагаются вплотную к глазу, поэтому их оптическая сила равна аметропии.
Например, если при близорукости дальняя точка находится перед глазом на расстоянии 50 см, то для ее исправления нужны контактные линзы с оптической силой в −2 диоптрии.
Слабая степень аметропии считается до 3 диоптрий, средняя — от 3 до 6 диоптрий и высокая степень — выше 6 диоптрий.
Астигматизм
При астигматизме фокусные расстояния глаза различны в разных сечениях, проходящих через его оптическую ось. При астигматизме в одном глазу сочетаются эффекты близорукости, дальнозоркости и нормального зрения. Например, глаз может быть близоруким в горизонтальном сечении и дальнозорким в вертикальном сечении. Тогда на бесконечности он не сможет видеть ясно горизонтальных линий, а вертикальные будет четко различать. На близком расстоянии, наоборот, такой глаз хорошо видит вертикальные линии, а горизонтальные будут расплывчатыми.
Причина астигматизма либо в неправильной форме роговицы, либо в отклонении хрусталика от оптической оси глаза. Астигматизм чаще всего является врожденным, но может стать следствием операции или глазной травмы. Кроме дефектов зрительного восприятия, астигматизм обычно сопровождается быстрой утомляемостью глаз и головными болями. Астигматизм корректируется при помощи цилиндрических (собирательных или рассеивающих) линз в сочетании со сферическими линзами.
Анатомия глаза: строение и функции
З рение — один из важнейших механизмов в восприятии человеком окружающего мира. С помощью визуальной оценки человек получает порядка 90 % информации, поступающей извне. Безусловно, при недостаточном или полностью отсутствующем зрении организм приспосабливается, частично компенсируя утерю с помощью других органов чувств: слуха, обоняния и осязания. Тем не менее ни одно из них не способно восполнить тот пробел, который возникает при недостатке зрительного анализа.
Как устроена сложнейшая оптическая система человеческого глаза? На чём основан механизм визуальной оценки и какие этапы он включает? Что происходит с глазом при потере зрения? Обзорная статья поможет разобраться в этих вопросах.
Анатомия глаза человека
Зрительный анализатор включает 3 ключевых компонента:
- периферический, представленный непосредственно глазным яблоком и прилегающими тканями;
- проводниковый, состоящий из волокон зрительного нерва;
- центральный, сосредоточенный в коре головного мозга, где происходит формирование и оценка зрительного образа.
Рассмотрим строение глазного яблока, чтобы понять, какой путь проходит увиденная картинка и от чего зависит её восприятие.
анатомия глаза
Строение глаза: анатомия зрительного механизма
От правильного строения глазного яблока напрямую зависит, какой будет увиденная картинка, какая информация поступит в клетки головного мозга и каким образом она будет обработана. В норме этот орган выглядит в форме шара диаметром 24–25 мм (у взрослого человека). Внутри него находятся ткани и структуры, благодаря которым картинка проецируется и передается на участок мозга, способный обработать полученную информацию. Структуры глаза включают несколько различных анатомических единиц, которые мы и рассмотрим.
Покровная оболочка — роговица
Роговица представляет собой особый покров, защищающий наружную часть глаза. В норме она абсолютно прозрачна и однородна, поскольку выполняет функцию считывания информации. Через неё проходят световые лучи, благодаря которым человек может воспринимать трёхмерное изображение. Роговица бескровна, поскольку не содержит ни одного кровеносного сосуда. Она состоит из 6 различных слоёв, каждый из которых несёт определённую функцию:
- Эпителиальный слой. Клетки эпителия находятся на наружной поверхности роговицы. Они регулируют количество влаги в глазу, которая поступает из слёзных желёз и насыщается кислородом за счёт слёзной плёнки. Микрочастицы — пыль, мусор и прочее — при попадании в глаз могут легко нарушить целостность роговицы. Впрочем, этот дефект, если он не затронул более глубокие слои, не представляет опасности для здоровья глаза, поскольку эпителиальные клетки быстро и относительно безболезненно восстанавливаются.
- Боуменова мембрана. Этот слой также относится к поверхностным, поскольку располагается сразу за эпителиальным. Он, в отличие от эпителия, не способен восстанавливаться, поэтому его травмы неизменно приводят к ухудшению зрения. Мембрана отвечает за питание роговицы и участвует в обменных процессах, протекающих в клетках.
- Строма. Этот довольно объёмный слой состоит из волокон коллагена, которые заполняют собой пространство.
- Десцеметова мембрана. Тоненькая мембранка на границе стромы отделяет её от эндотелиальной массы.
- Эндотелиальный слой. Эндотелий обеспечивает идеальную пропускную способность роговицы за счёт удаления лишней жидкости из роговичного слоя. Она плохо восстанавливается, поэтому с возрастом становится менее плотной и функциональной. В норме плотность эндотелия составляет от 3,5 до 1,5 тысяч клеток на 1 мм 2 в зависимости от возраста. Если этот показатель падает ниже 800 клеток, у человека может развиться отёк роговицы, в результате которого резко снижается чёткость зрения. Такое поражение — естественный итог глубокой травмы или серьёзного воспалительного заболевания глаз.
- Слёзная плёнка. Последний роговичный слой отвечает за санацию, увлажнение и смягчение глаз. Слёзная жидкость, поступающая в роговицу, смывает микрочастички пыли, загрязнения и улучшает проницаемость кислорода.
Функции радужки в анатомии и физиологии глаза
За передней камерой глаза, заполненной жидкостью, располагается радужная оболочка. От её пигментации зависит цвет глаз человека: минимальное содержание пигмента обусловливает голубой цвет радужки, среднее значение характерно для зелёных глаз, а максимальный процент присущ кареглазым и черноглазым людям. Именно поэтому большая часть деток рождается голубоглазыми — у них синтез пигмента ещё не отрегулирован, поэтому радужка чаще всего светлая. С возрастом эта характеристика меняется, и глазки становятся темнее.
Анатомическое строение радужки представлено мышечными волокнами. Они молниеносно сокращаются и расслабляются, регулируя проникающий световой поток и изменяя размер пропускного канальца. В самом центе радужки располагается зрачок, который под действием мышц изменяет диаметр в зависимости от степени освещённости: чем больше световых лучей попадает на поверхность глаза, тем уже становится просвет зрачка. Этот механизм может нарушаться под действием медицинских препаратов или в результате болезни. Краткосрочное изменение реакции зрачка на свет помогает диагностировать состояние глубоких слоёв глазного яблока, однако длительная дисфункция может привести к нарушению зрительного восприятия.
Хрусталик
За фокусировку и чёткость зрения отвечает хрусталик. Эта структура представлена двояковыпуклой линзой с прозрачными стенками, которая удерживается ресничным пояском. Благодаря выраженной эластичности хрусталик может практически моментально менять форму, регулируя чёткость зрения вдали и вблизи. Чтобы увиденная картинка получалась корректной, хрусталик должен быть абсолютно прозрачным, однако с возрастом или в результате болезни линзы могут мутнеть, вызывая развитие катаракты и, как следствие, нечёткость зрения. Возможности современной медицины позволяют заменить человеческий хрусталик имплантом с полным восстановлением функционала глазного яблока.
Стекловидное тело
Поддерживать шарообразную форму глазного яблока помогает стекловидное тело. Оно заполняет собой свободное пространство задней области и выполняет компенсаторную функцию. Благодаря плотной структуре геля стекловидное тело регулирует перепады внутриглазного давления, нивелируя негативные последствия его скачков. Кроме того, прозрачные стенки ретранслируют световые лучи непосредственно на сетчатку, благодаря чему складывается полная картинка увиденного.
Роль сетчатки в строении глаза
Сетчатка — одна из самых сложных и функциональных структур глазного яблока. Получая от поверхностных слоёв световые пучки, она преобразует эту энергию в электрическую и передаёт импульсы по нервным волокнам непосредственно в мозговой отдел зрения. Этот процесс обеспечивается благодаря слаженной работе фоторецепторов — палочек и колбочек:
- Колбочки — это рецепторы детального восприятия. Чтобы они могли воспринимать световые лучи, освещение должно быть достаточным. Благодаря этому глаз может различать оттенки и полутона, видеть мелкие детали и элементы.
- Палочки относятся к группе рецепторов повышенной чувствительности. Они помогают глазу видеть картинку в неудобных условиях: при недостаточном освещении или не в фокусе, то есть на периферии. Именно они поддерживают функцию бокового зрения, обеспечивая человеку панорамный обзор.
Склера
Тыльная оболочка глазного яблока, обращённая к глазнице, называется склерой. Она плотнее роговицы, поскольку отвечает за перемещение и поддержание формы глаза. Склера непрозрачна — она не пропускает световые лучи, полностью ограждая орган с внутренней стороны. Здесь сосредоточена часть сосудов, питающих глаз, а также нервные окончания. К наружной поверхности склеры прикреплены 6 глазодвигательных мышц, регулирующих положение глазного яблока в глазнице.
На поверхности склеры расположен сосудистый слой, обеспечивающий поступление крови к глазу. Анатомия этого слоя несовершенна: здесь нет нервных окончаний, которые могли бы сигнализировать о появлении дисфункции и прочих отклонений. Именно поэтому офтальмологи рекомендуют обследовать глазное дно не реже 1 раза в год — это позволит выявить патологию на ранних стадиях и избежать непоправимого нарушения зрения.
Физиология зрения
Чтобы обеспечить механизм зрительного восприятия, одного глазного яблока недостаточно: анатомия глаза включает ещё и проводники, которые передают полученную информацию в головной мозг для расшифровки и анализа. Эту функцию выполняют нервные волокна.
Световые лучи, отражаясь от предметов, попадают на поверхность глаза, проникают через зрачок, фокусируясь в хрусталике. В зависимости от расстояния до обозримой картинки хрусталик с помощью цилиарного мышечного кольца меняет радиус кривизны: при оценке удалённых объектов он становится более плоским, а дли рассмотрения предметов вблизи — наоборот, выпуклым. Этот процесс называется аккомодацией. Он обеспечивает изменение преломляющей силы и места фокуса, благодаря чему световые потоки интегрируются непосредственно на сетчатке.
В фоторецепторах сетчатки — палочках и колбочках — световая энергия трансформируется в электрическую, и в таком виде её поток передаётся нейронам зрительного нерва. По его волокнам возбуждающие импульсы перемещаются в зрительный отдел коры головного мозга, где информация считывается и анализируется. Такой механизм обеспечивает получение визуальных данных из окружающего мира.
Строение глаза человека с нарушением зрения
Согласно статистике, более половины взрослого населения сталкиваются с нарушением зрения. Наиболее распространёнными проблемами являются дальнозоркость, близорукость и сочетание этих патологий. Основной причиной этих заболеваний служат различные патологии в нормальной анатомии глаза.
При дальнозоркости человек плохо видит предметы, расположенные в непосредственной близости, однако может различить мельчайшие детали удалённой картинки. Дальняя острота зрения — бессменный спутник возрастных изменений, поскольку в большинстве случаев она начинает развиваться после 45-50 лет и постепенно усиливается. Причин этому может быть много:
- укорочение глазного яблока, при котором изображение проецируется не на сетчатке, а за ней;
- плоская роговица, не способная к регулировке преломляющей силы;
- смещение хрусталика в глазу, приводящее к неправильной фокусировке;
- уменьшение размеров хрусталика и, как следствие, некорректная передача световых потоков на сетчатку.
В отличие от дальнозоркости, при миопии человек детально различает картинку вблизи, однако дальние объекты видит расплывчато. Такая патология чаще имеет наследственные причины и развивается у детей школьного возраста, когда глаз испытывает нагрузки во время интенсивного обучения. При таком нарушении зрения анатомия глаза также изменяется: размер яблока увеличивается, и изображение фокусируется перед сетчаткой, не попадая на её поверхность. Ещё одной причиной близорукости может служить излишняя кривизна роговицы, из-за чего световые лучи преломляются слишком интенсивно.
Нередки ситуации, когда признаки дальнозоркости и близорукости сочетаются. В этом случае изменение строения глаза затрагивают и роговицу, и хрусталик. Низкая аккомодация не позволяет человеку в полной мере видеть картинку, что свидетельствует о развитии астигматизма. Современная медицина позволяет исправить большинство проблем, связанных с нарушением зрения, однако куда проще и логичнее заранее побеспокоиться о состоянии глаз. Бережное отношение к органу зрения, регулярная гимнастика для глаз и своевременное обследование у офтальмолога помогут избежать множества проблем, а значит, сохранить идеальное зрение на долгие годы.
Особенности строения человеческих глаз.
Глаз — один из важнейших органов чувств человека. Это парный орган, через который мы воспринимаем до 90% всей информации из нашего окружения. Глаза каждого человека обладают своей уникальностью, но несмотря на это общее строение данного органа одинаково для всего человечества. Строение глаза довольно сложное, и достигалось благодаря миллионам лет эволюции. Каждая составляющая имеет свое отдельно предназначение, и только все вместе они могут обеспечить глазу его функциональность.
Глазное яблоко
Глазное яблоко человека имеет форму шара, диаметр которого приблизительно равен 24 мм. Основной частью яблока является так называемое стекловидное тело. Эта прозрачная составляющая глаза служит для прохождения света, который попадает внутрь. Также стекловидное тело оказывает давление на прочие составляющие глазного яблока, например, сетчатку, тем самым удерживая ее в стабильном положении, и придавая глазу его круглую форму.
Тело имеет довольно плотный остов, который не позволяет жидкой составляющей растечься за пределы глаза.
Роговица
Роговица — сферичная ткань, не имеющая цвета. Она гладкая и блестящая, имеет форму сферы. В ней нет кровеносных сосудов, и она служит для дополнительного преломления световых лучей. В среднем, роговица имеет оптическую силу в размере 44 диоптрий. Толщина роговицы — до 1 миллиметра (на краях). Ее диаметр колеблется от 11,5 до 12 миллиметров.
Состоит роговица из пяти слоев:
- Передний эпителиальный слой. Данный эпителий в свою очередь имеет множество слоев, и играет защитную роль. При повреждении имеет свойство быстро регенерировать. Из-за высокой скорости восстановления на нем не появляется рубцов.
- Боуменова оболочка. Данный слой не так быстро восстанавливается, и может рубцеваться.
- Строма. Этот слой роговицы самый большой — составляет 90% от всего объема.
- Десцметова оболочка. Защищает глазное яблоко от попадания бактерий и вирусов.
- Эндотелий. Последний слой роговицы поддерживает ее состояние, обеспечивая ее питание и предотвращая набухание. Не имеет возможности к самовосстановлению, и с возрастом человека постепенно уменьшается.
Роговица, как наружная часть глаза, постоянно подвержена повреждениям — от механического воздействия пыли и прочих микрочастиц в воздухе, до теплового и химического. Она обладает превосходной чувствительностью, и способна улавливать малейшее раздражение. Тем самым обеспечивая важный защитный рефлекс глазного яблока — автоматическое смыкание век. При попадании чего-либо в глаз, человек не задумываясь закрывает его, тем самым смачивая роговицу слезной жидкостью, и полностью смывая все лишние частицы с поверхности.
Радужная и сосудистая оболочка
После роговицы следует такой важный слой как сосудистая оболочка. Кровеносные сосуды в ней обеспечивают весь глаз питательными веществами и кислородом.
Радужка в свою очередь входит в состав сосудистой оболочки. По своей форме она напоминает круг, с отверстием в центре — зрачком. Зрачок имеет свойство увеличиваться или уменьшаться, что происходит за счет сокращения или расслабления двух мышц — сфинктера и дилататора, располагающихся в радужной оболочке. При помощи зрачка контролируется поток света, попадаемого внутрь. Если света очень много, то зрачок автоматически сужается, чтобы не сжечь чувствительные клетки сетчатки. В условиях недостаточного освещения зрачок максимально расширяется, чтобы на сетчатку попадало как можно больше доступных лучей света — именно так человек и привыкает к темноте.
Эта часть глаза является самой красивой. Именно в ней содержатся пигментные клетки, которые и придает ей уникальный цвет. Оттенок будет зависеть от количества данных клеток. У новорожденных детей радужки глаз имеют слабую пигментацию, отчего у всех глаза светло-голубого цвета. Спустя несколько месяцев данная ситуация исправляется, и дополнительно образовавшиеся клетки приводят к потемнению радужки.
Если человек, или животное является альбиносом – не имеет пигментации, то его глаза будут розово-красного оттенка. Радужка при этом является практически полностью прозрачной, и цвет обеспечивается за счет красных кровеносных сосудов оболочки.
Хрусталик
Сразу за зрачком радужной оболочки располагается не менее значимая часть — хрусталик. Этот прозрачный элемент выглядит как двояковыпуклая линза. И выполняет именно функцию линзы — преломляет проходящий через зрачок свет, и перенаправляет его на светочувствительную сетчатку глазного яблока. Эта «линза» является эластичной, и при необходимости способна изменяться в своей форме, меняя свою оптическую силу.
Состоит хрусталик из передней и задней поверхности, которые разделяются его осью. Эта ось в среднем имеет 4 миллиметра в длину. По краям хрусталика эта ось обычно называется экватором. Сам хрусталик по своим размерам может быть от 9 до 10 миллиметров (если иметь в виду взрослого человека).
Поверхность хрусталика окружена своеобразной прозрачной капсулой, разделяемой на переднюю сумкой и заднюю капсулу. Отличие этих частей состоит в том, что передняя сумка покрыта эпителиальным слоем. Эпителий имеет возможность размножаться, что позволяет хрусталику расти в случае необходимости. Из-за такого строения, хрусталик схож с обыкновенной луковицей, где все его слои совмещаются в одну точку на вершине.
Хрусталик не обладает нервными окончаниями или кровеносными сосудами, по своей сути, он — образование эпителия. Его прозрачность полностью зависит от внутри глазной жидкости, и именно по этому с возрастом он может становиться мутным и значительно ухудшать зрение человека.
Ведь именно хрусталик обеспечивает проход света от зрачка к сетчатке. Если хрусталик станет мутным, то он станет пропускать гораздо меньше света. Помимо этого, именно хрусталик максимально преломляет свет — его оптическая сила составляет до 19 диоптрий.
Также хрусталик фактически делит глазное яблоко на две части, защищая каждую из них. Передняя часть глаза защищена хрусталиком от излишнего давления на нее стекловидным телом, а задняя — от внезапно проникнувшей внутрь глаза инфекции.
Сетчатка
Сетчатка — это именно та часть глазного яблока, которая воспринимает свет, который на нее попадает. По сути, это «конечная остановка» светового луча. Свет попадает на сетчатку после того как пройдет через хрусталик, преломится под нужным углом и проскочит через заднюю часть стекловидного тела. Обрабатывая полученную информацию, сетчатка создает и отправляет нервный импульс, сигнал, который может быть воспринят головным мозгом.
У этой важной и нежной оболочки очень сложное строение. Ее основная часть — макулярная область, более известная как желтое пятно. Она обладает наибольшим количеством фоторецепторов, воспринимающих свет, и позволяющих человеку хорошо видеть в дневное время.
Состоит она приблизительно из десяти слоев, которые в целом можно разделить на две основные группы: пигментный эпителий и светочувствительные нервные клетки.
Эпителий располагается по всей площади сетчатки. Именно он стыкуется с сосудистой оболочкой глазного яблока. Клетки пигмента в этих слоях имеют шестигранную форму, и находятся очень близко друг к другу в одном ряду. Такой барьер разграничивает поступление полезных веществ из сосудистой оболочки.
После пигментного эпителия располагаются слои со светочувствительными клетками. Таких клеток всего два типа : палочки и колбочки. Они получили свое название из-за своеобразной формы.
Палочки — небольшие цилиндры, длина которых всего 40 микрон. Некоторые из них могут достигать 50 микрон. В сетчатке находится приблизительно 130 миллионов палочек. Эти рецепторы воспринимают свет, и в основном отвечают за зрение в условиях слабой освещенности. Также палочки отвечают за периферическое зрение.
Колбочек в сетчатке гораздо меньше — всего около семи миллионов. Они отвечают за центральное зрение и цветовосприятие человека, и задействуются только при достаточном освещении. Поэтому, при недостатке света человек резко теряет возможность определять цвета.
Не зря была придумана пословица: «Ночью все кошки серые». Большая часть колбочек расположена именно в макулярной области.
Как палочки, так и колбочки вырабатывают специальный фермент. Он имеет название родопсин, и способен переводить энергию частиц света в электрический импульс. Этот импульс перенаправляется по нейронным отросткам далее — в зрительный нерв.
Зрительный нерв
Этот нерв является сплетением нервных волокон, стремящихся от сетчатки глаза. Эти волокна имеют свою структуру, больше напоминающую мозговое серое вещество, нежели обычные нервные волокна.
Эти волокна полностью пронизывают склеру глаза. Сплетаясь в один пучок, они не изолированы друг от друга специальным изоляционным веществом — миелином. Зрительный нерв напрямую идет в череп, где каждое нервное волокно идет в свою часть головного мозга.
Этот нерв получает информацию о воспринятом свете, так сказать, из первых рук. Без этого нерва смысл глазного яблока полностью теряется, ведь именно мозг человека обрабатывает информацию и возвращает зрительному отсеку полученную картинку того, на что были сфокусированы глаза. Если со зрительным нервом что-то не в порядке, то мозг будет получать искаженные данные, или не будет получать вовсе. Или же просто некоторые мозговые центры перестанут получать необходимую информацию. Все это выльется в серьезные проблемы со зрением, даже если сами глазные яблоки будут находиться в идеальном состоянии.
Даже самые небольшие травмы зрительного нерва способны вызвать каскад проблем со зрением. А при минимальных разрывах волокон этого сплетения возможно возникновение полной слепоты человека. Если же некоторые волокна просто перестанут работать, а мозг продолжит считать, что они в порядке, то возможны галлюцинации — человек начнет видеть то, чего на самом деле нет.
Строение и функции глаза
Человек видит не глазами, а посредством глаз, откуда информация передается через зрительный нерв, хиазму, зрительные тракты в определенные области затылочных долей коры головного мозга, где формируется та картина внешнего мира, которую мы видим. Все эти органы и составляют наш зрительный анализатор или зрительную систему.
Наличие двух глаз позволяет сделать наше зрение стереоскопичным (то есть формировать трехмерное изображение). Правая сторона сетчатки каждого глаза передает через зрительный нерв «правую часть» изображения в правую сторону головного мозга, аналогично действует левая сторона сетчатки. Затем две части изображения — правую и левую — головной мозг соединяет воедино.
Так как каждый глаз воспринимает «свою» картинку, при нарушении совместного движения правого и левого глаз может быть расстроено бинокулярное зрение. Попросту говоря, у вас начнет двоиться в глазах или вы будете одновременно видеть две совсем разные картинки.
Основные функции глаза
- оптическая система, проецирующая изображение;
- система, воспринимающая и «кодирующая» полученную информацию для головного мозга;
- «обслуживающая» система жизнеобеспечения.
Строение глаза
Глаз можно назвать сложным оптическим прибором. Его основная задача — «передать» правильное изображение зрительному нерву.
Роговица — прозрачная оболочка, покрывающая переднюю часть глаза. В ней отсутствуют кровеносные сосуды, она имеет большую преломляющую силу. Входит в оптическую систему глаза. Роговица граничит с непрозрачной внешней оболочкой глаза — склерой. См. строение роговицы.
Передняя камера глаза — это пространство между роговицей и радужкой. Она заполнена внутриглазной жидкостью.
Радужка — по форме похожа на круг с отверстием внутри (зрачком). Радужка состоит из мышц, при сокращении и расслаблении которых размеры зрачка меняются. Она входит в сосудистую оболочку глаза. Радужка отвечает за цвет глаз (если он голубой — значит, в ней мало пигментных клеток, если карий — много). Выполняет ту же функцию, что диафрагма в фотоаппарате, регулируя светопоток.
Зрачок — отверстие в радужке. Его размеры обычно зависят от уровня освещенности. Чем больше света, тем меньше зрачок.
Хрусталик — «естественная линза» глаза. Он прозрачен, эластичен — может менять свою форму, почти мгновенно «наводя фокус», за счет чего человек видит хорошо и вблизи, и вдали. Располагается в капсуле, удерживается ресничным пояском. Хрусталик, как и роговица, входит в оптическую систему глаза.
Стекловидное тело — гелеобразная прозрачная субстанция, расположенная в заднем отделе глаза. Стекловидное тело поддерживает форму глазного яблока, участвует во внутриглазном обмене веществ. Входит в оптическую систему глаза.
Сетчатка — состоит из фоторецепторов (они чувствительны к свету) и нервных клеток. Клетки-рецепторы, расположенные в сетчатке, делятся на два вида: колбочки и палочки. В этих клетках, вырабатывающих фермент родопсин, происходит преобразование энергии света (фотонов) в электрическую энергию нервной ткани, т. е. фотохимическая реакция.
Палочки обладают высокой светочувствительностью и позволяют видеть при плохом освещении, также они отвечают за периферическое зрение. Колбочки, наоборот, требуют для своей работы большего количества света, но именно они позволяют разглядеть мелкие детали (отвечают за центральное зрение), дают возможность различать цвета. Наибольшее скопление колбочек находится в центральной ямке (макуле), отвечающей за самую высокую остроту зрения. Сетчатка прилегает к сосудистой оболочке, но на многих участках неплотно. Именно здесь она и имеет тенденцию отслаиваться при различных заболеваниях сетчатки.
Склера — непрозрачная внешняя оболочка глазного яблока, переходящая в передней части глазного яблока в прозрачную роговицу. К склере крепятся 6 глазодвигательных мышц. В ней находится небольшое количество нервных окончаний и сосудов.
Сосудистая оболочка — выстилает задний отдел склеры, к ней прилегает сетчатка, с которой она тесно связана. Сосудистая оболочка ответственна за кровоснабжение внутриглазных структур. При заболеваниях сетчатки очень часто вовлекается в патологический процесс. В сосудистой оболочке нет нервных окончаний, поэтому при ее заболевании не возникают боли, обычно сигнализирующие о каких-либо неполадках.
Зрительный нерв — при помощи зрительного нерва сигналы от нервных окончаний передаются в головной мозг.